Search results for "Finite temperature"

showing 7 items of 7 documents

Strange and charm mesons at FAIR

2010

Presented at the XXXI Mazurian Lakes Conference on Physics, Piaski, Poland, August 30–September 6, 2009.

CharmCBMNuclear TheoryNuclear TheoryScalar ResonancesFOS: Physical sciencesStrange ; Charm ; Mesons ; CBM ; FAIR ; GSI ; Finite temperature ; Spectral functions ; Scalar ResonancesStrange mesonUNESCO::FÍSICA::Física molecular::Moléculas mesónicas y muónicasGSINuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph):FÍSICA [UNESCO]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentNUCLEAR-MATTERFAIREnergyMesonsFinite temperatureHigh Energy Physics::PhenomenologyUNESCO::FÍSICASpectral functionsTemperatureStrangeHigh Energy Physics - PhenomenologyCharm mesonsHigh Energy Physics::Experiment:FÍSICA::Física molecular::Moléculas mesónicas y muónicas [UNESCO]RESONANCES
researchProduct

Highly occupied gauge theories in 2 + 1 dimensions : a self-similar attractor

2019

Motivated by the boost-invariant Glasma state in the initial stages in heavy-ion collisions, we perform classical-statistical simulations of SU(2) gauge theory in 2+1 dimensional space-time both with and without a scalar field in the adjoint representation. We show that irrespective of the details of the initial condition, the far-from-equilibrium evolution of these highly occupied systems approaches a unique universal attractor at high momenta that is the same for the gauge and scalar sectors. We extract the scaling exponents and the form of the distribution function close to this non-thermal fixed point. We find that the dynamics are governed by an energy cascade to higher momenta with sc…

quark-gluon plasmaScalar (mathematics)Adjoint representationhep-latFOS: Physical scienceshiukkasfysiikka114 Physical sciences01 natural sciencesComputer Science::Digital Librariessymbols.namesakeHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Correlation functionfysikk0103 physical sciencesAttractorquantum chromodynamicsGauge theory010306 general physicsUNIVERSAL DYNAMICSParticle Physics - PhenomenologyMathematical physicsDebyePhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)finite temperature field theoryParticle Physics - Latticehep-ph115 Astronomy Space scienceHigh Energy Physics - PhenomenologyDistribution functionsymbolsScalar fieldrelativistic heavy-ion collisions
researchProduct

Spectral function for overoccupied gluodynamics from real-time lattice simulations

2018

We study the spectral properties of a highly occupied non-Abelian non-equilibrium plasma appearing ubiquitously in weak coupling descriptions of QCD matter. The spectral function of this far-from-equilibrium plasma is measured by employing linear response theory in classical-statistical real-time lattice Yang-Mills simulations. We establish the existence of transversely and longitudinally polarized quasiparticles and obtain their dispersion relations, effective mass, plasmon frequency, damping rate and further structures in the spectral and statistical functions. Our new method can be interpreted as a non-perturbative generalization of hard thermal loop (HTL) effective theory. We see indica…

CLASSICAL APPROXIMATIONNuclear Theorynucl-thquark-gluon plasmahep-latFOS: Physical sciencesHEAVY-ION COLLISIONShiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesquantum chromodynamicsQCD PLASMA INSTABILITIESStatistical physicsGauge theorynonperturbative effects in field theory010306 general physicsHARD THERMAL LOOPSParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsta114010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)kvarkki-gluoniplasmafinite temperature field theorylattice field theoryISOTROPIZATIONParticle Physics - Latticehep-ph16. Peace & justiceFIELD-THEORYGluonHigh Energy Physics - PhenomenologyNuclear Physics - TheoryQuark–gluon plasmaHIGH-TEMPERATUREGAUGE-THEORIESQuasiparticleSpectral functionkvanttikenttäteoriaStatistical correlationrelativistic heavy-ion collisions
researchProduct

Time-dependent Landauer—Büttiker formalism for superconducting junctions at arbitrary temperatures

2016

We discuss an extension of our earlier work on the time-dependent Landauer– Büttiker formalism for noninteracting electronic transport. The formalism can without complication be extended to superconducting central regions since the Green’s functions in the Nambu representation satisfy the same equations of motion which, in turn, leads to the same closed expression for the equal-time lesser Green’s function, i.e., for the time-dependent reduced one-particle density matrix. We further write the finite-temperature frequency integrals in terms of known special functions thereby considerably speeding up the computation. Simulations in simple normal metal – superconductor – normal metal junctions…

particle densitiesspecial functionsarbitrary temperatureelectronic transportfinite temperaturesnoninteractingsuperconducting junctions
researchProduct

Uhlmann number in translational invariant systems

2019

We define the Uhlmann number as an extension of the Chern number, and we use this quantity to describe the topology of 2D translational invariant Fermionic systems at finite temperature. We consider two paradigmatic systems and we study the changes in their topology through the Uhlmann number. Through the linear response theory we linked two geometrical quantities of the system, the mean Uhlmann curvature and the Uhlmann number, to directly measurable physical quantities, i.e. the dynamical susceptibility and to the dynamical conductivity, respectively.

0301 basic medicineSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciMathematics::Analysis of PDEsFOS: Physical scienceslcsh:MedicineCurvatureArticleCondensed Matter - Strongly Correlated Electrons03 medical and health sciences0302 clinical medicineTopological insulatorsInvariant (mathematics)lcsh:ScienceCondensed Matter - Statistical MechanicsMathematicsMathematical physicsPhysical quantityQuantum PhysicsMultidisciplinaryChern classStatistical Mechanics (cond-mat.stat-mech)Strongly Correlated Electrons (cond-mat.str-el)lcsh:RUhlmann number Chern number 2D topological Fermionic systems finite temperature dynamical susceptibility dynamical conductivity030104 developmental biologylcsh:QQuantum Physics (quant-ph)Theoretical physicsLinear response theory030217 neurology & neurosurgeryScientific Reports
researchProduct

Large-N kinetic theory for highly occupied systems

2018

We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. T…

Field (physics)Lattice field theoryFOS: Physical sciencesFixed point01 natural sciencesMany-body problemHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessirontanonperturbative effects in field theoryQuantum field theory010306 general physicsdynamiikkaPhysicsta114010308 nuclear & particles physicsScalar (physics)finite temperature field theoryultracold gasesHigh Energy Physics - PhenomenologyDistribution functionClassical mechanicsQuantum Gases (cond-mat.quant-gas)Kinetic theory of gaseskvanttikenttäteoriaCondensed Matter - Quantum Gasesrelativistic heavy-ion collisions
researchProduct

Skyrmions at finite density and temperature: the chiral phase transition

2008

The Skyrme model, an effective low energy theory rooted in large $N_c$ QCD, has been applied to the study of dense matter. Matter is described by various crystal structures of skyrmions. When this system is heated, the dominating thermal degrees of freedom are the fluctuating pions. Taking these mechanisms jointly produces a description of the chiral phase transition leading to the conventional phase diagram with critical temperatures and densities in agreement with expected values.

PhysicsNuclear and High Energy Physicsdense matterCondensed matter physicsSkyrmionHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesfinite temperatureChiral phasefluctuating pionsHigh Energy Physics - PhenomenologyskyrmionHigh Energy Physics - Phenomenology (hep-ph)chiral phase transitionDense matterMathematical physics
researchProduct